This is a stereo tone control unit which will make a useful addition to many of our power amplifier kits. It provides +/-12 dB of bass and treble boost/cut, and channel balance control.

Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.C. Input</td>
<td>6V – 15V DC</td>
</tr>
<tr>
<td>Current Drain</td>
<td>10 mA</td>
</tr>
<tr>
<td>Maximum output</td>
<td>> 3 V RMS</td>
</tr>
<tr>
<td></td>
<td>(12V DC supply)</td>
</tr>
<tr>
<td>Maximum input</td>
<td>> 3 V RMS</td>
</tr>
<tr>
<td>Gain (loss)</td>
<td>-2 dB</td>
</tr>
<tr>
<td>Input Z</td>
<td>~50 k ohm</td>
</tr>
<tr>
<td>Frequency resp.</td>
<td>< 20 Hz to > 50 kHz</td>
</tr>
<tr>
<td></td>
<td>-3 dB</td>
</tr>
<tr>
<td>THD at 1kHz</td>
<td>< 0.1 % at 1V output</td>
</tr>
<tr>
<td>S/N ratio</td>
<td>> 85 dB re. 1V RMS</td>
</tr>
<tr>
<td>Bass boost/cut</td>
<td>~ 12 dB at 50 Hz</td>
</tr>
<tr>
<td>Treble boost/cut</td>
<td>~ 12 dB at 15 kHz</td>
</tr>
</tbody>
</table>

How it works

C1 couples the AC signal set by the volume and balance potentiometers to the base of Q1 via R2. Q1 acts as a class A, emitter follower, buffer stage. R1 and R3 set the DC voltage at base to allow maximum signal swing. R2 determines the DC bias current and R4 provides the load impedance.

The AC output is coupled by C2 to the input of IC1 via a variable filter network which is also part of the feedback loop. With the bass and treble pots at their centre position, the impedance of the feedback circuit is balanced and will give a fixed gain at all frequencies within the pass band. When the pots are moved, the feedback ratio will increase or decrease at a frequency dependent rate governed by the capacitors C3 to C6 thereby providing the desired response curves.

R8 and R9 provide a DC bias on the op-amp input to allow it to operate from a single DC supply. C7 prevents the AC signal from varying this DC voltage level. C8 and R10 couple the AC signal to the power amplifier whilst blocking the DC voltage present at the op-amp output. C9 and R11 provide power supply decoupling or filtering. If you are using a battery supply, you can replace R11 with a wire link to reduce battery consumption, although the difference is negligible.

Construction

NOTE:

Some components are marked incorrectly on the PCB overlay:

- Capacitor C11 (10u) is shown the wrong way around. The + lead should be to the left.
- Resistors R1 and R13 are incorrectly labelled. They are 56K as per the schematic and parts list.
- Resistors R3 and R15 are incorrectly labelled. They are 47K as per the schematic and parts list.

Install the smaller components, starting with the resistors and the IC socket, with the notch as shown on the overlay. The IC will also have a notch or a dot at one end. Do not fit the IC until after you have soldered the socket into place though. Install the transistors, capacitors and PCB pins, leaving the pots until last. The volume pot is the log pot (A taper). Be careful when installing the transistors, they must go in the correct way as shown on the PCB overlay.

The electrolytic capacitors are also polarised and the leads marked. The longer lead is positive, and should be inserted in the hole marked with the + sign.

Use only shielded cable for the input and output connections, and make sure the power supply leads are as short as possible.

Testing

The power supply is critical to the noise performance of the pre-amp. A well regulated supply or plug pack should be used to reduce mains hum. However a regulator will not be necessary with a car or other battery supply. Make sure you test the voltage and polarity first in all cases before connecting to the board.

Make sure the volume control is turned down, and that the other pots are centred. Then connect a music source and power amp, and increase the volume slowly. You should hear the music. Check the operation of the Bass, Treble and Balance controls, being careful not to use full boost at high volume.

If there is no output, recheck all wiring, all
component positions and polarity of transistors, ecaps, and orientation of the IC. Check for bad solder joints, and solder bridges between tracks, especially the IC pins.

The complete data sheet for the MC4558 IC can be obtained from our web site at:

http://www.kitsrus.com

K155. Stereo Tone Control Unit

PARTS LIST

Resistors
R1,R9,R13 56K (green,blue,orange) 3
R2,R10,R14,R20 1K (brown,black,red) 4
R3,R8,R15 47K (yellow,violet,orange) 3
R4,R16 2K2 (red,red,red) 2
R5,R6,R7,R17 10K (brown,black,orange) 6
R18,R19
R11 120R (brown,red,brown) 1
R12,R21 3K3 (orange,orange,red) 2

Capacitors
C1,C2,C8,C10 10uF/25V ecap.................... 6
C11,C16
C3,C4,C12,C13 33nF mono (333) 4

Misc
IC1 MC 4558 1
Q1, Q2 BC547 2
VR1 100k dual gang log pot. (A) 1
VR2 100k single gang linear pot. (B) 1
VR3, VR4 50k dual gang linear pot. (B) 2
Kit 155 Printed Circuit Board 1
8 pin DIL IC socket 1
PCB pins ... 7

NOTE:
Some components are marked incorrectly on the PCB overlay:

- Capacitor C11 (10u) is shown the wrong way around. The + lead should be to the left.
- Resistors R1 and R13 are incorrectly labelled. They are 56K as per the schematic and parts list.
- Resistors R3 and R15 are incorrectly labelled. They are 47K as per the schematic and parts list.
Circuit Diagram
Left channel only (right channel components in brackets)

Photo of completed circuit board.
THD at 1 kHz, 1V RMS output

Effect of Tone Controls
Maximum Boost / Cut